

HTML Visualization Guide – Version 1.2.0

(For the latest documentation see also:

http://korpling.github.io/ANNIS/)

title: ANNIS HTML Visualization Guide

version: 1.2.0

date: 15 September 2016

author: Amir Zeldes

organization: Georgetown University

e-mail: annis@corpus-tools.org

homepage: http://corpus-tools.org/annis

http://korpling.github.io/ANNIS/
mailto:annis@corpus-tools.org
http://corpus-tools.org/annis

1

Contents

1. Introduction ... 2

2. Visualization Variants and Configuration .. 2
Document and Hit Context Visualizers .. 2
Adding a Visualization to a Corpus .. 2

3. Building the Visualization .. 3
The .config File – Triggering HTML Elements using Annotations 3
Styling the Elements with CSS ... 4

4. Some Examples .. 5
Information Structure Visualization .. 5

Diplomatic Manuscript View .. 7
Script View for Subtitle Corpora .. 9

5. Advanced features ... 10
Including metadata or constants at the top or bottom ... 10

Using HTML templates... 11

6. Further Information ... 11
References .. 11

2

1. Introduction

ANNIS is an open source, browser-based search and visualization architecture for multi-

layer corpora. The system offers a variety of visualizations tailored to specific types of

corpus data, such as constituent trees, dependency trees, coreference, rhetorical structure

theory and more.

However, in many cases corpora have unique annotations that cannot be visualized

optimally with a generic visualization module. Starting in ANNIS3, we therefore offer

the HTML visualizer module, which generates annotation-conditioned HTML elements

styled with CSS classes.

2. Visualization Variants and Configuration

This section details how the two variants of the HTML visualizer are constructed and

triggered. Each corpus can have an unlimited amount of HTML modules, which consist

of two files each and can visualize either entire corpus documents or the immediate

search result in context.

Document and Hit Context Visualizers

The two HTML visualizers are called html and htmldoc. Both visualizers, like all ANNIS

visualization modules, are configured in the relANNIS file resolver_vis_map.tab to be

either available by default (namespace and triggering element are left as NULL) or are

triggered by the presence of a specific annotation namespace. See the ANNIS User Guide

for more details on configuring resolver_vis_map.tab and triggering visualizations.

The html visualizer, once triggered, is fed the tokens from the search result and its

immediate context (e.g. ±n tokens), including all annotations above these tokens. The

htmldoc visualizer, by contrast, is given access to all tokens and annotations in the

document that the search result comes from. Typically, htmldoc is used for visualization

meant for close reading of text content, whereas html is better suited to highlighting or

marking smaller annotation structures, where the reading of the running text is less

important.

Adding a Visualization to a Corpus

To make a visualization available for a corpus, two files are required, which should be

placed in the subfolder ExtData/ within the relANNIS folder for the corpus. Both files

should have the same name (case sensitive), but with different extensions. The

configuration file, which specifies which HTML elements are triggered by which

annotations, should have the extension .config. The Cascading Stylesheet file defining the

styles referred to in the configuration file should have the extension .css. The common

file name (without extensions) should be listed in resolver_vis_map.tab in the mappings

column (last column) using the syntax: config: myfile. The configuration file in this

example will be called myfile.config and the CSS file will be called myfile.css.

3

3. Building the Visualization

An HTML visualizer is defined by a pair of files: the configuration file (.config) and the

stylesheet (.css). The same files may be used for html and htmldoc visualizers.

The .config File – Triggering HTML Elements using Annotations

The config file is a simple, tab delimited table with three columns and no headings.

Comments may be added after the # sign within a line, or a line may contain only a

comment if it begins with #.

The three columns of the configuration file represent the triggering condition, the

generated element and the content value (optional). The first column specified an

annotation name, value or name and value combination which should be used as a trigger

for generating HTML elements, whereas the second column specifies which element

should be generated and with what attributes, as soon as the condition is met. The third

column specifies what literal content should be written within the element, and can be

either a double quoted string literal, the value of the triggering annotation (the reserved

string value) or the name of that annotation (anno). If the value of the annotation is

expected to contain characters that could be interpreted as markup (e.g. it contains angle

brackets ‘<’ which would be rendered as HTML tags), it is possible to specify

escaped_value instead of value. This will escape HTML entities in annotation values as

appropriate.

As a simple example, consider the following configuration file:

title b value #prints the title in bold
chapter p #surrounds each chapter with a p
chapter i "Kapitel: " #prints "Kapitel: " in italics
chapter i value #value of 'chapter' in italics
="God" span; style="color: red" #red where anno value is "God"
pb span; style="color: grey" "page " #grey span with text "page "
pb_n span; style="color: grey" value #grey span with value of 'pb_n'
trans span:title; style="transl" value #value of 'trans' in title attr.
tok span; style="tokStyle" #prints each token

The first instruction tell the visualizer to surround any annotation called 'title' with

… elements and also to output the value of that title annotation between those

elements.

The second instruction surrounds chapter elements with <p> tags, and the third adds the

text "Kapitel: " within <i> elements. The fourth instruction adds the value of the 'chapter'

annotation. As a result, something like the following might be created:

<p><i><i>Kapitel: 1</i></i></p>

Note that the double <i> tags are redundant, but have no effect on the visualization in

practice.

4

The instruction ="God" does not specify an annotation name. Any annotation having that

value will cause a styled span to surround the specified area. It is equally possible to

write lemma="God" to limit this behavior to annotations called lemma.

It is also possible to generate attributes inside HTML elements. For example, the trans

instruction creates a span with a title attribute using the syntax span:title. When an

attribute is declared in this way, the third column is interpreted as filling that attribute,

rather than the element content, i.e. the value of 'trans' is put into the title element (this is

useful for creating a hovering translation tooltip, since title attributes are interpreted as

tooltips by most browsers).

As a final instruction, note the declaration of the tok instruction. Tokens are not outputted

by default. If you wish for the visualization to print out each token, use the tok instruction.

In this case each token will be surrounded by a span element, which is given the style

tokStyle. This style, and all others, are defined in the accompanying CSS file, which is

described in the next section.

Styling the Elements with CSS

The style file is a simple Cascading Style Sheet (CSS file), which may contain any valid

CSS instructions. The range of possible CSS instructions depends primarily on browser

support and not on ANNIS. Current examples implement features of CSS3, such as

selectors and pseudo-elements. For more information see the CSS documentation at

http://www.w3.org/Style/CSS/.

Some ANNIS specific points to keep in mind when writing CSS for the HTML visualizer

are the following. The HTML visualization is wrapped within a <div> element of the

class htmlvis. To set things like padding, height or width for the visualizer, add

instructions for this element, as shown below. Note that ANNIS does not wrap text in

visualizers by default, so white-space: normal must be specified and flagged as important

to override the inherited setting from the rest of the ANNIS interface.

A second point to keep in mind is that tokens and other textual elements printed out by

the visualizer are not separated by spaces by default. This is done, among other things, in

order to allow for continuous script visualizations of historical corpora, where spaces

between tokens are undesirable. In order to introduce spaces, you may have them printed

by special instructions in the .config file which produce a string literal space (" "), or you

can produce them using CSS pseudo elements, as in the example below. The

class .tokStyle has an 'after' pseudo element, which is given a single space as 'content'.

This results in a space being inserted after each token.

Finally note that CSS allows for powerful interactive features, such as styling behavior

while hovering over elements. The .transl class below colors the area enclosed by its

elements blue when the text is hovered over. Combined with the title attribute from

the .config file in the previous section, this produces a tooltip containing e.g. a translation,

and corresponding coloring for the section that is being translated. For some more

elaborate examples, see the following section.

http://www.w3.org/Style/CSS/

5

div.htmlvis {

width: 500px; white-space: normal !important; margin-top:10px; margin-bottom:10px

}

.tokStyle:after{content: " "}

.transl:hover{color: blue}

4. Some Examples

The following examples may be used as full document or hit context visualizations,

though the subtitle and manuscript examples are probably better suited to the full

document htmldoc visualizer. All of the examples are downloadable along with the entire

corpus from http://annis-tools.org/corpora.html.

Information Structure Visualization

This visualization was designed by SFB632/D1 (http://www.sfb632.uni-

potsdam.de/en/cprojects/d1.html) for the pcc2 corpus (Stede 2004), which can be freely

downloaded from the ANNIS website. As seen in the image below, the visualization

renders a large title for the text, underlines expressions in shades of red and blue

depending on their information status (discourse new, given etc.), and surrounds topic

and focus spans with blue and red brackets. A hovering tool tip gives the exact value of

the information status annotation (e.g. giv-active) and the hovered area is colored in grey.

The .config file giving with the triggering instructions for the visualization is given below.

Each token is printed using tok as an instruction and value as its content. The style tok is

the applied to a surrounding each token. Headings are surrounded by a <div>

with the style heading. The three information structure annotations Topic, Focus_newInf

and Inf-Stat each create a span with an attribute called topic or focus in the first two cases.

The Inf-Stat annotation, by contrast, generates a title attribute, which will be rendered by

most browsers as a hovering tool tip. The value for all of these attributes is the value of

the corresponding annotation, as indicated by the instruction value.

http://annis-tools.org/corpora.html
http://www.sfb632.uni-potsdam.de/en/cprojects/d1.html
http://www.sfb632.uni-potsdam.de/en/cprojects/d1.html

6

tok span; style="tok" value
Focus_newInf span:focus; style="focus" value
Topic span:topic; style="topic" value
Inf-Stat span:title; style="infstat" value
heading div; style="heading"

The CSS file below is used to render the styles triggered by the .config file:

div.htmlvis {

width: 500px; white-space: normal !important; margin-top:10px; margin-bottom:10px

}

.heading{display: block; white-space:nowrap; font-size: large;}

.tok:after{content: " "}

.infstat[title*=new]{border-bottom: 2px solid red; border-right: 2px solid white}

.infstat[title*=acc]{border-bottom: 2px solid DodgerBlue; border-right: 2px solid white}

.infstat[title*=giv]{border-bottom: 2px solid blue; border-right: 2px solid white}

.infstat[title*=idiom]{border-bottom: 2px solid grey; border-right: 2px solid white}

.infstat:hover{color: grey}

.focus:before{content: "["; color: red; font-weight: bold}

.focus:after{content: "] "; color: red; font-weight: bold}

.topic[topic*=fs]:before{content: "["; color: DodgerBlue; font-weight: bold}

.topic[topic*=fs]:after{content: "] "; color: DodgerBlue; font-weight: bold}

.topic[topic*=ab]:before{content: "["; color: blue; font-weight: bold}

.topic[topic*=ab]:after{content: "] "; color: blue; font-weight: bold}

The div.htmlvis style gives the settings for the entire visualizer, such as width and margin,

and sets the text white-space to wrap normally, e.g. when the window is resized.

The .heading style makes the heading <div> display as a block in large font (cf. the

heading Feigenblatt in the image above). The tok:after instruction inserts a space after

each token, as described in Section 3.

The next block of instructions styles the information status annotations. The title attribute,

which contains the value of the annotation Inf-Stat is checked using a CSS selector to see

whether the span corresponds to some type of new, acc(essible), giv(en) or idiom(atic)

information. Note that the CSS * selector matches substrings, so that giv-active matches

the selector *=giv. Depending on the information status, a different color is chosen for a

bottom border for that span, which serves as an underline. For all .infstat spans, the hover

behavior is defined as changing the color of encompassed text to grey.

A similar set of instructions is applied to focus annotations, except that instead of

underlines, pseudo elements 'before' and 'after' place red brackets before and after the

annotation span. Finally, the set of topic instructions combines the two strategies above

and generates brackets before and after topic annotations, but makes the color depend on

a CSS selector which distinguishes framesetter topics (fs) from aboutness topics (ab).

7

Diplomatic Manuscript View

The manuscript view is suitable for diplomatic editions of historical corpora. It displays

text in a two column, page by page view, gives line numbers in multiples of five at the

margin of each column, and allows for words broken up across lines or pages. It also

renders superscript characters as superscripts. In the example below, the visualization has

been applied to a Sahidic Coptic corpus, containing a sermon by the Coptic archimandrite

Shenoute (4
th

-5
th

 century). A tooltip gives the number of the page when hovered over.

The visualization and the corpus were developed by the project Coptic SCRIPTORIUM

(http://copticscriptorium.org).

The .config file is given below. Tokens are simply printed in unstyled spans. This will

lead to tokens being serialized without intervening spaces, which is desirable for a

diplomatic edition of the manuscript. Only spaces actually present in the corpus will be

rendered. Any annotation with the value "superscript" is rendered in a <hi_rend> element

with an attribute rend. Note that though these names do not correspond to actual HTML

element names, they are rendered and styled by the browser nonetheless.

Line annotations using the annotation name lb (for line-break) generate <div> elements

with the style line. The annotation pb_xml_id, which gives the page break and page

number in the manusacript, creates two elements: a <table> with the style pb and a title

containing the page number annotation, and a <tr> (table row) element for the page

which creates a table row to house the two columns of the manuscript. The table title

attribute creates the tooltip in the image above. Finally, each column within a page

receives its own table cell, a <td> element, which has the style cb (column break).

http://copticscriptorium.org/

8

tok span value
="superscript" hi_rend:rend value
lb div; style="line"
pb_xml_id table:title; style="pb" value
pb_xml_id tr
cb td; style="cb"

The CSS file for the visualization is the following:

.htmlvis {

font-family: Antinoou, sans-serif; counter-reset: line 0;

}

div.line:nth-of-type(5){text-indent:10px;}

div.line:nth-of-type(5n):before{content:counter(line)" "}

div.line{display: block; white-space:nowrap; counter-increment: line ; height: 22px}

div.line:not(:nth-of-type(5n)){text-indent:20px;}

.pb{border-style:solid;}

.cb{vertical-align: top; counter-reset: line 0; width: 160px;}

hi_rend[rend~=superscript] {vertical-align: super; font-size: 80%}

The .htmlvis container has been given the font Antinoou, which displays Coptic

characters encoded in UTF-8. The font may be embedded in ANNIS for users who do not

have the font (see ANNIS User Guide on font embedding). The container is also given a

CSS counter called line, which will keep track of line numbers and is set to 0 at the

beginning of the visualization with the reset instruction.

The next four instructions style the individual line <div> elements. For line 5, which is

the only single digit line number, an indent of 10px is added to align all line numbers

neatly. All lines in multiples of 5, using the nth-of-type CSS selector, receive the line

number from the line counter. The value of the counter is inserted into a :before pseudo

element and followed by a single space " ". The third line instruction set lines to display

as blocks, without wrapping, at 22px height each. Whenever a line <div> occurs, the

counter line is incremented using the CSS counter-increment instruction. For lines that

are not multiples of 5, a text indent of 20px is added to occupy the space that the line

numbering takes up in lines that are multiples of 5.

The two following instructions are responsible for the page and column styling. Pages

(.pb) are given a solid border, and columns are aligned to the top (in case a column has

not been transcribed fully or is empty at the bottom) and given a width of 160px.

Whenever a column begins, the line counter is reset to zero, so that lines will be

numbered anew in the following column. Finally, the instruction for the 'made up'

element <hi_rend> which was generated by the .config file checks for a rendering

instruction containing the word superscript using the word matching CSS selector ~=. If

this value is found in the rend attribute, vertical-align is set to superscript and the letter is

scaled down to 80% of its size. An example of this rendering can be seen in the image

above in line 9 of the second column, just before the end of the line (a superscript 'o').

9

Script View for Subtitle Corpora

This visualization is meant to convey sequential dialogue from a film, in which speakers

do not overlap, i.e. one character speaks after the other. The corpus is a transcription of a

Nigerian film in the Hausa language, called Umarnin Uwa ("Mother's Decree"). Code

switching and words of foreign origin are annotated in the corpus and highlighted in blue

in the visualization. The name of each character is given before their indented dialogue.

The corpus was prepared within SFB632 by projects D1 and A5 (see

http://www.sfb632.uni-potsdam.de/en/cprojects/).

The .config file for the corpus is given below. There are only four instructions generating

the visualization:

tok span; style="word" value
speaker div:speaker; style="spk" value
lang span:lang; style="lang" value
info t:title; style="info" value

Each token is placed in a span with the style word. The spans containing the tokens are

always annotated with the speaker name, so for every speaker annotation a <div> element

is created with an attribute speaker containing the speaker name value and the style

"spk".
1
 If a lang(uage) annotation is present, then a span with the attribute lang is

generated giving the value of the language annotation in the attribute. Finally, some

information from info annotations, which in this corpus give information about relevant

extralinguistic events in the film, are placed in the title attribute of a <t> element, so as to

be available as hovering tooltips.

The CSS style sheet for the visualization is given below.

1
 Note: the class name speaker as a style should be avoided since the ANNIS style sheet uses this class

name itself to mark A/V data alignment in spoken corpora.

http://www.sfb632.uni-potsdam.de/en/cprojects/

10

div.htmlvis {

width: 500px; white-space: normal !important;

}

.word:after{content: " ";}

div.spk{display: block; padding-top: 6px; padding-bottom: 6px; text-indent: -65px;

padding-left: 65px}

div.spk:before{content: attr(speaker) ": "; font-weight:bold}

.lang{color: blue; font-style: italic}

.info:hover{color: red}

As in the information structure visualization, white-space has been set to normal

wrapping and the width has been fixed for the visualizer. The .word style creates the

spaces between the tokens with an :after pseudo element, again as in the information

structure visualization.

The speaker <div> elements are displayed as indented blocks with a large left padding to

make space for the speaker name. Before each speaker <div>, the name is inserted into

a :before pseudo element, which is given as content the value of the attribute speaker,

followed by ": ", and rendered in bold.

Finally the .lang style gives foreign elements of any language blue, italic rendering and

the .info style colors info spans in red, while the information tooltip is generated by the

title attribute created in the .config file.

5. Advanced features

Including metadata or constants at the top or bottom

It is possible to include metadata or arbitrary strings in the HTML visualizer. Since

metadata doesn’t ‘happen’ at any point in the document, typically you will want to trigger

this kind of information to render at the beginning or end of the visualizer frame. To do

so, you can use the special instructions annis:BEGIN or annis:END in the first column of

the config file.

The second column of such instructions behaves as usual and can generate any HTML

element you like. You can also include multiple BEGIN and END instructions, which are

generated in sequence. For the third column of such lines, you may want to incorporate

metadata. To do so, use the meta:: prefix, and the name of a metadatum in your document.

The example below illustrates this mechanism.

annis:BEGIN span meta::title
chapter span meta::chapter_num
annis:END span meta::author_name

11

Using HTML templates

Sometimes you may want to include an annotation value in the visualizer’s output, but

you’ll want to wrap it in a special way. For example, you may want to generate a link

containing the value of your annotation as some sub-part of that link. You can do this by

declaring constant strings in the third column of the config file, but including the reserved

terms %%value%% and %%name%%, which embed the annotation’s name and value

respectively. For example, you could create a lemma lookup in an external site like this:

lemma div %%value%%

This instruction generates a div showing the lemma, but also wrapping the lemma value

in a link which contains the lemma itself.

6. Further Information

The possibilities for creating annotation triggered HTML visualizations are highly varied.

If you would like to create a new kind of visualization but have trouble getting the

module to do what you want, don't hesitate to contact the ANNIS team (see ANNIS

website for contact information: http://corpus-tools.org/annis).

In many cases, difficulties are caused by conflicting hierarchies in HTML elements,

which arise because of the fact that ANNIS supports SGML style conflicting nesting in

annotation spans that are not foreseen in the HTML standard. Other problems are caused

by the HTML data model, which does not accept the nesting of certain elements within

other elements. Often experimentation can lead to a solution, though some things remain

impossible with the current technology. We are constantly working to improve and

expand ANNIS – if you have a request for features not covered in the current release or

have found a bug, please use our issue tracker and submit your feature request or bug

report at: https://github.com/korpling/ANNIS/issues.

References

Stede, M. 2004. The Potsdam Commentary Corpus. In Webber, B./Byron, D. K. (eds.)

Proceeding of the ACL-04 Workshop on Discourse Annotation. Barcelona, Spain,

96–102.

http://corpus-tools.org/annis
https://github.com/korpling/ANNIS/issues

